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SYNOPSIS 

The steady state approximation in free radical polymerization is known to break down 
during the operation of commercial reactors, in which case the unsteady mole balance of 
polymer radicals have to be solved numerically. We observed that the differential equations 
governing the zeroth, first, and second moments of polymer radicals in free radical poly- 
merization are nonlinear in nature. The numerical solution of these is “stiff” because the 
concentration of polymer radicals is very small. Assuming an isothermal reactor, in the 
absence of the gel effect, these differential equations can be transformed in a suitable new 
domain where they are linear and can be solved analytically. We have subsequently developed 
a computer program for nonisothermal reactors in the presence of the gel effect using the 
analytical solution between any time increment. The results have been compared with 
those obtained from the fourth order Runge-Kutta technique. We show that when the 
temperature changes are fast, the Runge-Kutta technique cannot handle the stiffness, and 
the results begin to deviate from the exact solution. We find that our computer program 
is computationally efficient in handling this stiffness, takes considerably less time, and can 
be adapted to any personal computer. 

INTRODUCTION 

The chain growth polymerization has been studied 
by several researchers and has been confirmed to 
consist of the following three reaction steps.’-5 
Initiation: 

kd 
I 2  + 2 1  

I + M + P ;  
k i  

Propagation: 

Termination and Transfer: 

ktp 
P; + I +  M ,  

P’, + P‘, + Mni, 

Pt + pX + M ,  + M ,  

ktc 

krd 

P ‘ . + S 2 M , + P l  (1) 
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In order to simplify the analysis in the chain 
growth polymerization, the equal reactivity hypoth- 
esis is assumed to be valid. According to this hy- 
pothesis, all molecular species react with rate con- 
stants that are independent of chain length. 

It has been found experimentally that all primary 
radicals, I ,  do not lead to propagation due to waste 
side reactions. In the literature, initiator efficiency 
f is defined, which represents the fraction of primary 
radicals utilized in chain growth. There are several 
factors that affect the initiator efficiency and these 
have been discussed in the literature in detail.6-’2 

After a certain conversion (around 10% ) , the well- 
known gel effect, which corresponds to a large ac- 
celeration in the rate of polymerization, and an as- 
sociated increase in the molecular weight set in. Nu- 
merous theoretical and experimental studies of the 
gel effect have been reported and it is generally 
agreed that the effect is due to the reduction in the 
termination rate constants, k, and ktd.’3-24 Near the 
final polymerization ( for conversions greater than 
70-80% ) , when the reaction mass becomes highly 
viscous, the chain propagation becomes diffusion 
controlled. As a result of the reduction in kp,  the 
rate of polymerization takes a dip, which ultimately 
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goes to zero as the reaction temperature becomes 
the same as the glass transition temperature of the 
polymerizing mixture. This behavior is known as 
the glass 

Most of the studies of chain growth polymeriza- 
tion in reactors assume isothermal reactor operation. 
In commercial practice, however, reactors cannot be 
maintained in isothermal conditions. Practical 
problems of heat transfer and thermal runaway in- 
variably O C C U ~ . ~ ’ - ~ ~  Because of their simplicity and 
low cost, tubular reactors are commercially employed 
and, in the literature, they have been theoretically 
as well as experimentally i n ~ e s t i g a t e d . ~ ~ - ~ ~  The con- 
trol of molecular weight distribution (MWD) has 
been carried out by programmed monomer and sol- 
vent addition and these have been studied in the 
l i t e r a t ~ r e . ~ ~ - ~ ~  

In earlier studies of free radical polymerization, 
it was commonly assumed that the quasi steady state 
approximation ( QSSA) holds. Under this approxi- 
mation, the rate of formation and the rate of deple- 
tion of the polymer radicals are equal. Therefore, 

In this work, we have recorded the transient mole 
balance relation for all species in the reaction mass. 
Assuming that the various rate constants for the 
mechanism of isothermal free radical polymerization 
given in eq. (1) are time independent, we develop 
the complete analytical solution. We have also in- 
tegrated the energy balance equation making use of 
the above assumption. After every time step, At,  we 
estimate the temperature; rate constants are eval- 
uated at  the new temperature, which are used in 
calculating [ M I ,  [ P I ,  and other quantities in the 
next time step. This removes the stiffness of the 
differential equation and the results are obtained 
conveniently in negligibly small computation time. 

THEORETICAL DEVELOPMENTS 

It is possible to make mole balance for various spe- 
cies in the reaction mass. The batch reactor results 
are given in Table I. We define the concentration 
of polymer radicals, [ P I ,  as: 

Here [PIs represents the total concentration of 
polymer radicals with QSSA valid and [ I 2 ]  is the 
initiator concentration. However, when gel effect 
sets in, k, has been shown to decrease in value, which 
will result in increased [ PIs under QSSA, and which 
will lead to higher rates of polymerization. Since all 
polymerization reactions are exothermic in nature, 
the temperature of the polymer mass would increase 
for the same cooling rate, which, in turn, would give 
a higher rate of initiation. Hence, under the influence 
of gel effect, the upward thermal drift always occurs 
and the QSSA breaks down. 

If the QSSA breaks down, the mole balance re- 
lation for polymer radicals [ PI would be governed 
by a nonlinear first order differential equation in- 
stead of by the simple relation given in eq. ( 2 ) .  The 
concentration [PI in the reaction mass is normally 
a very small number compared with the monomer 
or initiator concentration. As an example, styrene 
polymerized at  60°C with benzoyl peroxide initiator, 
[ PIs [as calculated from eq. ( 2 ) ] ,  is of the order 

moles per liter. As a consequence, in the nu- 
merical computation of [ PI through its governing 
differential equation, the time increment chosen 
( A t )  must be very small. This means that the dif- 
ferential equations governing the performance of the 
tubular reactor carrying out radical polymerization 
are numerically extremely “stiff” and the numerical 
solution is computationally time consuming. 

n = l  

With the help of eq. ( 1 . 2 )  of Table I, one can 
derive an expression for the time variation of [PI 
as below: 

When the gel and thermal effects are present in 
radical polymerization, the rate constants kd and k, 
are dependent on temperature and monomer con- 
version and therefore cannot be integrated. We will 
show that eq. ( 4 )  has a solution for constant kd and 
k, and then develop an analytical solution for iso- 
thermal polymerization in the absence of the gel ef- 
fect. Subsequently, we will show that these results 
can be naturally adopted in the presence of the gel 
and thermal effects. 

Solution of Isothermal Radical Polymerization 

The mole balance for the initiator given in eq. (1.1) 
of Table I can be integrated for time invariant f t z d  

as 
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Table I Mole and Energy Balance Relation for Various Species in Batch 
(or Tubular) Reactors Carrying out Radical Polymerization 

(A) Distribution Balance: 
1. Initiator, Iz 

2. Growing Polymer Radicals, [Pn],  of chain length n (n = 1, 2, 3 . . .) 
oc 

[PI = C t p n l  
n=l  

3. Monomer, M 

4. Inactive Polymer, [M,],  of chain length n (n = 2, 3, . . .) 

5. Energy Balance 
d T  4u 
d t  

pCp - - (-aH,)rZ,[n/rl[P] - z ( T - T w )  

(B) Balance of Moments: 

1. -= d[P1  2 f k d [ Z 2 ]  - kt[PI2 d t  

(1.1) 

(1.2) 

(1.3) 

(1.9) 
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In the above equation, [ I 2 l 0  is the concentration of  
initiator at t = 0. Let us now transform [PI in eq. 
(4) 

1 d y l d t  
[PI =-- 

kt Y 

and upon substituting eq. (5) for [ 12] in eq. ( 4 ) ,  one 
obtains, 

(7 )  

Further, we define x related to time of polymeriza- 
tion as 

X = 2 f kd kt [ Iz]oe-kdt ( 8 )  

This gives 

dY 
dt  dx dt dx 

- - k d X  - dY - dY dx 

- - 
d 2 y  d t2  - dx dt  dx  dt 

In terms of these, eq. ( 7 )  becomes 

C )  

we further transform x by 

where 

b =  (jy 
in terms of which, eq. (10) reduces to 

d2Y dY 
2 2 -  + 2- - ( Z 2  - 0 ) y  = 0 (12 )  d Z 2  d 2  

For this, y has the following solution 

Where I.  (2 ) and KO (2 ) are the modified zeroth or- 
der Bessel functions and C1 and C2 are the constants 

of integration. With the help of eq. (6), one can 
derive [PI as 

kdZ 1 d y  [PI = 
2kt y dZ  

where C = C1/C2, which is to be determined by the 
initial conditions. 

Let us assume that at t = 0, the concentration of 
Polymer radicals is [ PI0.  In the Z plane, time t = 0 
corresponds to Zo given by 

and C in eq. (15) is given by 

C =  

where 

In the above equation, [ PIs is the concentration 
of polymer radicals, assuming the steady state ap- 
proximation, and is given by eq. ( 2 ) .  

The variation in the monomer concentration, 
[ M I ,  is governed by eq. ( 1.3) of Table I. We sub- 
stitute eq. (11) in the equation to obtain: 

or 
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We substitute 

which, upon differentiation with respect to 2, gives 

(21) 
du - _  - - K , ( Z )  + CI , (Z )  
dZ 

Comparison of eqs. ( 18) and (20) yields 

which, upon integration, leads to 

In the above equation, [ M I 0  is the monomer con- 
centration at t = 0 (or Z = 2,) and Zo is defined in 
eq. (16) .  

The magnitude of 2, as defined in eq. ( 11 ) , is 
very large. For example, for methyl methacrylate 
polymerizing at 60°C with AIBN [ I 2 ] ,  = 0.0258 mol/ 
L ]  initiator, the rate constants kd, kp, and k, are 
0.475 X min-’, 0.4117 X lo5 L/mol min, and 
0.20383 X 10” L/mol min, respectively. Taking ini- 
tiator efficiency f to be 0.58, we get at time t = 0 
that “b”, as defined in eq. ( 11 ) , and xo ,  as defined 
by eq. ( 8 ) ,  to be 1.3175 X lo7  and 2.8756 X lo4, 
respectively. Therefore, Z at time t = 0 is given in 
eq. (16) and is equal to 0.1231 X lo7. Hence, the 
asymptotic expansion of Bessel functions valid for 
large arguments (2 > 5)  may be used.49 When we 
later consider the time dependent polymerization, 
due to changing temperature rate constants and 
properties of the reaction mass, conditions could 
arise when this approximation may not be valid. 
However, for most isothermal polymerizations, the 
asymptotic expansion is valid and is not limited to 
the MMA system only. 

Neglecting terms involving Z in the denominator, 
we get 

Making use of the above approximations for Bes- 
sel functions, C defined in eq. (17) yields 

After substituting for C and Bessel functions, we get 
an expression for the time variation of [PI as 

The quantities CIo (2 ) and CIo (2,) in eq. (23) ,  for 
[MI are given by 

- ( Z o - Z )  

CIo(Z)  = J/ae-zo - v5z- 

These may be taken as zero, since both 2 0  and Z 
are of the order lo6. Hence eq. (23) for [MI  sim- 
plifies to 

[ M I  = [ ~ ] ~ e - m ( z ~ - z )  (28) 

where 

* = -  kP 
kt 

The balance for the transfer agent S is given by 

-- d [ S 1  - - k t , [ S ]  [PI 
dt (29) 

Dividing this by eq. (1.3) of Table I for the balance 
of monomer, one has 

which upon integration, yields 

In the above equation, [ S ] ,  is the initial concentra- 
tion of the transfer agent. 
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By making use of the above expressions for [ M I ,  
[ S ]  , and [ P I ,  we can obtain analytical expressions 
for various moments of radical and dead polymer 
distributions as follows. 

Radical and Dead Polymer Moments 

The differential equation for first moment Q1 for 

radical distribution ( =  2 n[pn])  can be derived 

from eq. ( 1.2) of Table I as follows 

a3 

n=l  

The above equation is a linear differential equa- 
tion of the first order, if we assume rate constants 
as time invariant. We get the integrating factor 
( I .  F.) as follows 

I.F = exp[ k, J [Pldt} (33) 

Observing that 

eq. (33) reduces to 

(35) 

The integration of the differential equation (eq. 
32) gives Q1 as 

Q1[ Ellim 

x [ $]-l'mdt 

Substituting [ 1'1 from eq. ( 11 ) in terms of 2 as 

and carrying out the integration to finally obtain, 

(36)  
where 

and -[MI0 
1 - l / m  

c1 = 

In order to derive the differential equations gov- 
erning zeroth, first, and second moments of dead 
polymer distribution, we make use of the mole bal- 
ance for Mn from Table I. We have 

Furthermore, we know that, 

The zeroth moment of dead polymer distribution X0 
= (2 M,) can be derived by adding eq. (38) for 

all n 
n 

d h o  - '" [PI '  + ktd[P]' + kt,[S][P] 
d t  2 (40) 
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ou 

where [PI = C [ Pn]  and, making use of eq. (34) ,  
n=l 

we get, 

and hence 

+ S kt,[SI [ P l d t  (41)  

Substituting for [PI from eq. (27), we get 

The rigorous evaluation of the integral leads to 
an infinite series and is given in Appendix I. How- 
ever, if Z above is assumed to be approximately equal 
to Zo, the integration in eq. (42)  is considerably 
simplified without much affecting the results. Thus, 
eq. (42)  leads to 

2 (Zo-Z) 

2(Zo-Z)  dZ + ( [ S I  - [SIO) (43)  

This can be easily integrated to 

The differential equation for first moment X1 ( 
00 

= c n[M].) of dead polymer distribution is simi- 

larly derived using eqs. (38) and (39) as follows: 

n=l 

Upon elimination of [ P I ,  with the help of eq. ( 1.3) 
of Table I, 

Substituting for Q1, and using 

we get, 

+ ktrC1 [ S]oeP1(zo-z)dt 

+ S ktrC2 [ S]oeP2(Zo-Z)dt 

where XIO is the value of XI at  time t = 0 and C1 and 
C2 are as defined in eq. (37 ) .  

Upon integration, we obtain, 
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1 + - - (2: - Z 2 )  + ( 2 0  - 2 )  
212, kd " 2 

wherep, = -m(n+ l ) , p 2  = - (mn+ l ) , p 3  = -mn, 
and n = ktr/kp. 

The expression for second moment of polymer 
radical distribution, Q2 ( =  C n 2 [ P n ] ) ,  is derived 
making use of eq. (1.2) of Table I ,  to obtain 

This is again a linear differential equation of first 
order. As before, the integrating factor is equal to 

( L Y ) - I / m  , and hence 

Q1 + bp [ Mo] [PI  dt + constant 1 
Substituting for [ 12] and Q1, we get 

We integrate the above expression assuming Z 
= Zo. The rigorous solution has also been derived 
and is presented in Appendix I. We find that the 
results derived in the following equation yields re- 
sults that are accurate to within 0.01%. 

where C* is evaluated using the initial condition Q2 
= Q20 at  t = 0. Therefore we get 

The differential equation for second moment, A2 

= C n2 [ Mn]  , of dead polymer distribution is derived 
using the Mole balance relation (eq. 38) and eq. (39 )  
as follows: 
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We observe that 

Integrating the above equation, assuming 2 = Z0 in 
the denominator and taking it out of the integral, 
we get 

I c2kd ( ( 1 -  - 
kt [MI0 

+- 

Also, 

S k ,[P]Q2dt  = 3 S -%- d( E) 
I Z p  (E) 

Substituting Q2 from eq. ( 5 0 ) ,  and carrying out the 
integration assuming Z = 2, is in the denominator, 
we get 

1 = - [ - [ - (2; - Z 2 )  + ( 2 0  - 2 )  k, mkd 1 
kp 212, 2 

where C* is as defined in eq. ( 5 0 ) .  Therefore, 
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COMPUTATIONAL TECHNIQUES 

We have derived the analytical solution for isother- 
mal radical polymerization in batch reactors. In or- 
der to check the consistency of these results, we have 
computed the various reactor parameters using the 
fourth order Runge-Kutta numerical technique and 
we have checked our results against the analytical 

Init ial values 
M,P ,  Iz,QriQz 

, A I  8 Az,T 
Par ameters 
kp , k, , kt  , f Cp , AHr ,Tw, dia 

1 

4 
t = o  I 

Use R K  method t o  
Solve balance eqns (Table 2 ) 
d [I21 I d t  eqn.(2,1) ; dQIdt  eqn.(2.5) 

d [PI I d t  eqn.(2,2) , d h l l d t  eqn42.6) 

d [Mlldt eqn.(2.3), dQzIdt eqnd2.7) 

dho Idt  eqn.(24) i dTIdt eqn(2.9) 

dh21dt eqn(2.8) i 

-;-3. if I t,,Ic 0 

4 
out 

Figure 1 
merization. 

Runge-Kutta scheme for free radical poly- 

solution. The flow chart of the fourth order Runge- 
Kutta technique is given in Figure 1 and we have 
varied At in Table I1 and seen its effect upon the 
numerical solution. For stable solution, we find that 
the time increment At must be about 0.0001 min. 
The flow chart of computation for our analytical 
solution is given in Figure 2 .  It must be observed 
that our analytical solution are given in terms of 
the Z variable. For the isothermal reactor, there is 
a straight forward exponential relation. However, 
for nonisothermal cases, there is an ambiguity in 
terms of properly defining 2. This arises because, 
in general, the rate constants vary with time of po- 
lymerization.'To overcome this difficulty, we recall 
that in the Runge-Kutta technique, the total time 
of polymerization is divided into small incremental 
time. The concentration parameters, [ M I ,  Xo, hl , 
Xz, [ P I ,  Q1, and Qz, for the next incremental time, 
are calculated using their values at a given time. 
This fact has been shown in Figure 2.  In such com- 
putations, the reaction parameters are assumed to 
be time invariant between the incremental times. 

For the cases in which the temperature of poly- 
merization changes as well as gelation occurs, we 
similarly divide the total time of polymerization into 
small incremental times. Between these time incre- 
ments, we assume that the rate constants are time 
invariant. If we assume this, all the results for iso- 
thermal reactors are valid between the incremental 
time; only the energy balance equation remains to 
be integrated as shown below. 

The modelling of nonisothermal polymerization 
can be done by inclusion of the following energy 
balance, 
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Table I1 Stable Time Step for Fourth Order Runge Kutta Method 

At = 0.02 min At = 0.01 rnin At = 0.005 min At = 0.0001 rnin 
Time 
(rnin) [PI A0 [PI  x lo7 xo x lo4 [PI  x lo7 A,, x lo4 [PI x lo7 A,, x lo4 

10 - - 0.2175 0.1305 0.83503 0.1299 0.83503 0.1299 
20 - - 0.2193 0.2607 0.8349 0.26066 0.8349 0.2606 

0.3913 30 - - 0.2210 0.3906 0.8348 0.39132 
40 - - 0.2228 0.5201 0.8347 0.5219 0.8347 0.5219 
50 - - 0.2245 0.6492 0.8346 0.65256 0.8346 0.6525 
60 - - 0.2263 0.7780 0.83446 0.7831 0.83446 0.7831 

0.8348 

Here, ( -  AHH,) is the heat of the reaction, U is the 
heat transfer coefficient, and T, is the surrounding 
temperature. The above equation may be rearranged 
using eqs. (1.3) of Table I and (28) .  They may be 
written as follows: 

I Time t =  0 
I 

Compute 
( i )  8 eqn. (13 )  

a t = t +  h 

Update variables estimate 
rate constants at new 

Figure 2 
free radical polymerization. 

Semianalytical scheme based on this work for 

Table I11 Rate Constants and Other 
Parameters for PMMA22*43 

A = 0.168 - 8.21 X (T-TgP)' 
B = 0.03 
C, = 0.4 cal/gm°C 
Ed = 30.66 Kcal/mol 
E, = 4.35 Kcal/mol 
E, = 0.701 Kcal/mol 
E, = 4.09 Kcal/mol 
EBp = 28.2 Kcal/mol 
E,, = 34.4 Kcal/mol 
f = 0.58 
AHr = 13.9 Kcal/mol 
k: 
&' 
k; 
k: = 3.956 X 

e0, = 5.4814 X rnin 
8 = 1.1553 X mol min/L 
p m  = 0.9665-0.0011 (T-273) gm/cm3 
pp = 1.2 gm/cm3 
[Z2j0 = 0.0258 gmol/L 

= 6.32 X 10l6 min-' 
= 5.88 X lo9 L/mol rnin 
= 2.95 X lo7 L/mol rnin 

Tgp = 387 K 

= 89334 w o l / L  

(gel effect) (2.1) 
k t 3 0  

Do + ktoetxo 
k, = 

(glass effect) (2.2) kPOD0 
Do + kpepxo 

kp = 

where 

e:, Bt = - exp (EBt/RT) 
[I21 

(2.3) 

I 2.303(1 - @p) 

A + B ( l  - @) 
D o = [  (2.5) 
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Table IVA 

Time [MI X [PI X lo7 Q1 X lo3 Q2 A, x lo3 A1 x2 x 10-~ PD1 

Results of Isothermal Polymerization without Gel Effect" 

10 0.8631 
(0.8632) 

20 0.8340 
(0.8341) 

30 0.8059 
(0.8060) 

43 r r5: 1-iw 

(0.7788) 
50 0.7525 

(0.7527) 
60 0.7273 

(0.7274) 

0.834 
(0.834) 
0.8328 

(0.8328) 
0.8317 

(0.8317) 
6!83!! 
(0.8305) 
0.8294 

(0.8294) 
0.8283 

(0.8283) 

0.1745 
(0.1745) 
0.1686 

(0.1686) 
0.1629 

(0.1629) 
v? 25672 
(0.1574) 
0.1521 

(0.1521) 
0.1470 

(0.1470) 

0.7297 
(0.7297) 
0.6822 

(0.6823) 
0.6379 

(0.6380) 
,".m.% 
(0.5966) 
0.5579 

(0.5580) 
0.5218 

(0.5219) 

0.1306 
(0.1305) 
0.2608 

(0.2607) 
0.3907 

(0.3905) 
fi"535~ 
(0.520) 
0.6495 

(0.6492) 
0.7784 

(0.7780) 

0.3019 
(0.3016) 
0.5933 

(0.5930) 
0.8746 

(0.8741) 
J. J .@J 
(1.1454) 
1.4081 

(1.4072) 
1.6610 

(1.6599) 

0.1386 
(0.1385) 
0.2682 

(0.2680) 
0.3892 

(0.3890) 
n,5(122 
(0.5019) 
0.6077 

(0.6074) 
0.7063 

(0.7059) 

1.9851 
(1.9864) 
1.9869 

(1.9873) 
1.9879 

(1.9882) 
12892 
(1.9895) 
1.9908 

(1.9910) 
1.9929 

(1.9930) 

' Results in paranthesis are numerical computations with A t  = 0.0001 min. 

dY - + Py = (ye-'"' 
dx 

The integrating factor of eq. (58) is e@'. Using 
the initial condition T = T o  at x = 0, we obtain the 
following solution. 

(57) 

where 

Y = T-Tw 

(-AfC)[Mlo m ( d )  (58) This result has been built in the algorithm in Fig- a =  
P C P  ure 2.  

Table IVB Results of Nonisothermal Polymerization without Gel Effect a 

[MI x lo-' [PI x lo7 
Time Temp. gmol gmol 
(min) "K L L Q~ x 103 QZ A, x 103 A1 x2 x lo4 PDI 

10 331.32 0.8687 0.6631 
(331.49) (0.8662) (0.7529) 

20 331.27 0.8462 0.6575 
(331.44) (0.8405) (0.749) 

30 331.23 0.8244 0.6531 
(331.39) (0.8159) (0.7456) 

40 331.184 0.8034 0.6487 
(331.342) (0.7920) (0.7423) 

50 331.146 0.7830 0.6446 
(331.296) (0.7689) (0.7392) 

60 331.110 0.7533 0.6407 
(331.252) (0.7467) (0.7361) 

0.1707 0.8791 0.09047 0.2454 0.1329 1.9897 
(0.1707) (0.7742) (0.1142) (0.2718) (1.1332) (1.9864) 
0.1662 0.8595 0.1716 0.4714 0.2575 1.982 

(0.1665) (0.7315) (0.2151) (0.5218) (0.2572) (1.9863) 
0.1617 0.8013 0.2515 0.6893 0.3755 1.9876 

(0.1605) (0.6912) (0.3191) (0.7749) (0.3736) (1.987) 
0.1575 0.7648 0.3303 0.900 0.4874 1.9874 

(0.1557) (0.6531) (0.4221) (0.1013) (0.4835) (1.9874) 
0.1534 0.7302 0.40809 0.1104 0.5936 1.9876 

(0.1510) (0.6174) (0.5242) (0.1243) (0.5868) (1.9883) 
0.1495 0.6772 0.4849 0.1301 0.6942 1.988 

(0.1466) (0.5837) (0.6254) (0.1466) (0.68403) (1.989) 

Kcal -. Dia = 2.0 cm. 
h cm'c' 

Results in parenthesis are numerical computations with A t  = 0.0001 min. U = 2.0343 X 
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TIME (min) - 
Figure 3 
indicates numerical instability. 

[MI vs. t for isothermal polymerization ( T  = 333'K) with gel effect. Star 

I 

10 I 
LEGENQ 

- Analytical 
0 - a2 = 0.2 
x - a2 = 2.0 

------ Numerical 
b - nt.o.001 
o - At :0.005 

TIME (min) - 
Figure 4 
indicates numerical instability. 

[MI  vs. t for isothermal polymerization (T = 343'K) with gel effect. Star 
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RESULTS AND DISCUSSION 

We have considered the simulation of batch reactor 
carrying out free radical polymerization. The reac- 
tion mass consists of unreacted monomer M ,  initi- 
ators 12, polymer radicals P, ( n  = 1, 2 * - - ) , and 
dead polymer chains, M,  ( n  = 2, 3, - - - ) . The mole 
balance relations for these species are given in Table 
I and they are seen to involve fives rate constants 
k d ,  kp,  kt,, ktd,  and ktr. To reduce the computational 
task, we have developed the moment relations; these 
are also given in Table I. These moment relations 
are an infinite set of differential equations; their nu- 
merical integration is difficult because of several 
reasons, which follow. 

Let us first consider the polymerization of methyl 
methacrylate using benzoyl peroxide initiator and 
various rate constants that are summarized in Table 
111. It is found that the termination rate constants, 

kt, and ktd,  are both dependent upon the zeroth and 
the first moments of polymer in addition to tem- 
perature and the fall of rate constants with conver- 
sion is attributed to the gel effect. Similarly, the 
propagation rate constant kp also is reduced due to 
the glassy effect. For short times of polymerization, 
these rate constants could be taken as time invari- 
ant. Rough computations show that for short times, 
the molar concentration of polymer radicals, [ P I ,  
is of the order of monomer concentration, [ M I ,  
of the order of 10, while the reactor temperature is 
of the order of lo2. Due to the wide variation in the 
ranges of various reactor parameters, the differential 
equations of Table I are numerically “stiff” and re- 
quire selection of a very small time increment A t .  
In order to remove this numerical stiffness, in this 
work we have attempted to adopt the analytical so- 
lution, developed for invariant rate, as follows. 

It is observed that all computational schemes, im- 

1 6 ’  

I I 

F -  LEGEND 

333K;a - A t  =0.01 

343K;  a - At = 0.001 

-_____ Numerical 

0 - At ~0.005 

o - At ~0.0005 

- Analytical 
x - n z  = 2.0 
0 -  A2 = 0.2 

0 40 80 120 160 
TIME (min) + 

Figure 5 
merical instability. 

[PI vs. time for isothermal polymerization with gel effect. Star indicates nu- 
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plicits or otherwise, divide the total polymerization 
time, t ,  into small incremental times, A t .  Between 
these incremental times, the process variables are 
assumed to be constant at some value and the slopes 
of the variation of these process variables is evalu- 
ated. In the Runge-Kutta computations, the slopes 
are computed at  four points and their averages are 
computed to determine the values of the process 
variables a t  the end of the incremental times. A suc- 
cessive repetition of this method leads to the com- 
plete numerical solution seen in the flow chart of 
Figure 1. 

Using the Runge-Kutta numerical technique of 
Figure 1, we have developed the numerical solution 
of polymerization of methyl methacrylate in batch 
reactors. We find that the numerical results depend 
upon the value of At chosen, and we have summa- 
rized some of the results in Table 11. For large A t ,  

numerical values become independent of the choice 
of A t .  We have subsequently found the numerical 
solutions for following cases. 

Case 1. Isothermal polymerization without the gel 
effect (i.e., k, = k m )  and glass effect (i.e., kp = k@). 
Temperatures of the reactor is 333°K. 

Case 2. Isothermal polymerization with the gel and 
glass effects ( kt and kp given in Table 111). Reactor 
temperature is 333"K, 343°K and 363°K. 

Case 3. Nonisothermal polymerization without the 
gel effect (i.e., k, = k,) and glass effect (i.e., lz, = k @ ) .  
Initial temperature is 333°K. 

Case 4. Nonisothermal polymerization with the gel 
and glass effects ( l z ,  and Iz, given in Table 111). Initial 

results are found to diverge, whereas for At - 0.0001, temperature is 333'K. 

333 K ; A  - At .0.01 I 

o - Atz0.005 

343 K j A - At :0.001 

Analytical 
x - n z  z 2 . 0  
0 -  n z  z0.2 

I I I I 
0 40 80 120 160 

TIME (min) - 
Figure 6 
instability. 

A,, vs. time for isothermal polymerization with gel effect. Star indicates numerical 
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We have also prepared a computer program, with 
the flow sheet in Figure 2, in which we have com- 
puted the results using the analytical solution be- 
tween a given time increment instead of evaluating 
the slopes as done earlier. In Table IV (A and B), 
we have given the results derived from the Runge- 
Kutta technique as well as from the analytical 
scheme for Case 1 computations. A total match of 
results confirms that the analytical expressions de- 
rived in this work are free from any error. 

In Case 2 computations, we assume the batch re- 
actor to be isothermal, but rate constants, $, &, 
and ktd,  are allowed to drift due to the glass and gel 
effects according to Table 111. It is found that after 
a certain time of polymerization, the rate constants 
kp and k, decrease in value and the monomer is con- 
sumed at  a rapid rate. In Figure 3, [ MI vs. t , derived 
from the Runge-Kutta technique, has been plotted 
for At = 0.01,0.012, and 0.005. For At less that 0.005, 
results merge with curve 3; however for At larger 
than this, there is an overflow in computation. Also 
in Figure 3 is shown the results found from semian- 

alytical approach developed here in 2-domain; we 
found that for AZ less than 0.2, results overlap with 
curve 2, while for larger AZ, the point where sharp 
rise in conversion occurs is preponed. The compar- 
ison of curves 2 and 3 in Figure 3 shows that the 
results are close to each other for short times, 
whereas for large times the semianalytical solution 
predicts sharper and earlier gelation. Similar [MI  
vs. t is observed at  higher temperature, as shown in 
Figure 4. Figures 5 and 6 give the numerical as well 
as semianalytical results for [PI vs. t and X o  vs. t ,  
respectively. The increase in the values of [PI and 
Xo are found to be considerably sharper for the latter, 
and this perhaps is responsible for what observations 
made in Figures 3 and 4. We have similarly presented 
results for XI and X2 vs. t in Figures 7 and 8. The 
difference between the numerical and semianalytical 
decreases as higher moments increase, and h2 results 
are essentially similar. Generally, in numerical 
computations, no matter what At is chosen the re- 
sults become unstable as the end of the computation 
is approached. This is because [PI begins to fall and 

LEGEND 

----- Numerical 
333K; a - At 10.01 

0 - At=0.005 

343K; A - At=O.OOl 
0 - At ~0.005 

0 40 80 120 1 
TIME lmin) - 

Figure 7 
instability. 

XI vs. time for isothermal polymerization with gel effect. Star indicates numerical 
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10' 

1 lo! 
N 

x 

1 0' 

1 0  

10 

LEGEND 
Numerical --_-_- 

3 3 3 K ;  A - at ~0.01 
3 L 3 K ;  A - At ~0.001 

- Analytical 
x - n z  :2.0 
0 - n z  =0.2 

I I I 
LO 80 120 160 

TIME (min)  + 

Figure 8 
instability. 

X2 vs. time for isothermal polymerization with gel effect. Star indicates numerical 

LEGEND 
Numerical 

A - At = 0.001 
0 - at = 0.0005 
0 - at = 0.0001 

Analytical 
x -  az= 2.0 
0 -  az- 0.2 

0 2 L 6 a 10 
TIME (min) --+ 

Figure 9 
indicates instability in R.K. technique. 

[ M ]  vs. time for nonisothermal polymerization without gel effect. Star above 



204 VENKATESHWARAN AND KUMAR 

470 

430 

- 
F 
; 490- 

d 

e 

- 
3 I- 

W a 
I 

350 

- 

- 

- 

LEGEND 

Numerical 
A - a t  = 0.001 

- ~1=0 .0001  

Analytical 
0 - a z .  0.2 
x -a2 z2.0 

D - a t  :0.0005 

* 

I I I I I 1 I 
0 2 4 6 8 10 

T I M E  (min) + 

Figure 10 
Star above indicates instability in R.K. technique. 

Temperature vs. time for nonisothermal polymerization without gel effect. 

LEGEND 

Numerical 
A - At :0.001 
O - a t  ~0.0005 

- a t  .0.0001 

Analytical 
x - a z  = 2.0 
0 - a2 = 0.2 

TIME (min) - 
Figure 11 
indicates numerical instability. 

[PI vs. time for nonisothermal polymerization without gel effect. Star above 
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near the end it becomes negative, which leads to a 
numerical overflow. 

Computation for Cases 3 and 4 require additional 
energy balance equations, which must be solved si- 
multaneously. The semianalytical as well as the nu- 
merical results for Case 3 are shown in Figures 9 to 
15. Figure 9 gives [ M I  vs. t and, for short times, the 
results are almost identical. The point of gelation 
for numerical results is always characterized by an 
overflow. On the other hand, there is never an in- 
stability in the semianalytical, even though the time 
of gelation is predicted to be lower than those pre- 
dicted through the numerical technique. The tem- 
perature, T, vs. t in Figure 10 also shows a point of 
sharp rise and corresponds to point of gelation in 
[MI  vs. plot in Figure 9. The [PI vs. t in Figure 11, 
X o  vs. t in Figure 12, XI vs. t in Figure 13, A2 vs. t in 
Figure 14, and Q2 vs. t in Figure 15 behave similarly. 

The general case of nonisothermal polymerization 
with gel and glass effect (i.e., Case 4 )  has also been 
analyzed and the results have been presented in 

Figures 16 to 22. As found earlier, the match between 
the numerical and semianalytical is excellent for 
short times. For the latter, as A2 is increased, the 
time of gelation is found to decrease, whereas for 
the numerical, the time of gelation is larger and the 
results always undergo an overflow. It appears (Fig- 
ure 18) that the value of [PI predicted by semian- 
alytical technique is of a larger order of magnitude 
and when the gelation occurs, the rise in [PI is also 
very steep. It is likely that the Runge-Kutta tech- 
nique is not good enough to pick up this fast rise 
and this may be responsible for the discrepancy in 
results. 

CONCLUSIONS 

The simulation of free radical polymerization has 
been carried out extensively in the past and is known 
to take considerable computer time due to stiffness 
of differential equations governing the zeroth, first, 

E 
I I I I I I 

0 4 0 12 
TIME (rnin) + 

Figure 12 
numerical instability. 

Xo vs. time for nonisothermal polymerization without gel effect. Star indicates 
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Figure 13 
numerical instability. 

XI vs. time for nonisothermal polymerization without gel effect. Star indicates 
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LEGEND 

Numerical 
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O - At = 0.0005 

- at = 0.0001 

Analytical 
x - a z z 2 . 0  
0 - az = 0.2 

f 

l o 3 4  0 4 TIME (min) 8 12 

Figure 14 
numerical instability. 

X2 vs. time for nonisothermal polymerization without gel effect. Star indicates 
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LEGEND 

Numerical 
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O - At ~0.0005 
0 -at =0.0001 

Analytical 
x - n z :  2.0 
0 -  n z =  0.2 
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I I I I I 

0 4 8 12 
TIME (min) + 

Figure 15 
numerical instability. 

Q2 vs. time for nonisothermal polymerization without gel effect. Star indicates 

LEGEND 
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2 4 6 8 10 
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Figure 16 
numerical instability. 

[ MI vs. time for nonisothermal polymerization with gel effect. Star indicates 
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Figure 17 
numerical instability. 

T vs. time for nonisothermal polymerization with gel effect. Star indicates 
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Figure 18 
numerical instability. 

[PI vs. time for nonisothermal polymerization with gel effect. Star indicates 
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Figure 19 
numerical instability. 

A,, vs. time for nonisothermal polymerization with gel effect. Star indicates 
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Figure 20 
numerical instability. 

A, vs. time for nonisothermal polymerization with gel effect. Star indicates 
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Figure 21 
numerical instability. 

X2 vs. time for nonisothermal polymerization with gel effect. Star indicates 
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Figure 22 
numerical instability. 

Qz vs. time for nonisothermal polymerization with gel effect. Star indicates 
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and second moments of free radicals. These relations 
are nonlinear in nature, but it was possible to trans- 
form them into the 2-domain, where they are linear 
for time invariant rate constants. This transfor- 
mation is possible only when the reactor is operated 
isothermally and the analytical solution for these 
has been developed in this work. 

It was further realized that while solving the re- 
actor performance numerically (using any tech- 
nique, e.g., fourth order Runge-Kutta) , between any 
given time increment, the reactor is indeed assumed 
isothermal and, with this assumption, the differ- 
ential equations are assumed to give approximately 
the same result as the difference equation. 

We have developed a computer program to cal- 
culate the performance of nonisothermal reactor in 
presence of gel effect using the analytical solution 
developed above. We have also found the solution 
numerically using the fourth order Runge-Kutta 
technique. We find that the semianalytical approach 
always gives stable results under all variations of 
parameters studied while the Runge-Kutta tech- 
nique, under similar parameters, diverges in the end. 
It was found that the numerical integration of dif- 
ferential equations could not compute the fast 
change in [ P I ,  Q1, and Qz accurately and the solution 
diverged as a result of this. In addition, the semian- 
alytical approach adopted in this work is compu- 
tationally efficient and can be adopted on any per- 
sonal computer. 

The authors thank the Department of Science and Tech- 
nology, New Delhi, India for the financial support. 

APPENDIX I 

Rigorous Solution of Dead Polymer and Radical 
Moments 

We have assumed that 2 = Zo in eqs. ( 4 2 ) ,  ( 4 8 ) ,  
and (52)  in the derivation of equations for Xo,  Q z ,  
and As. The rigorous solution for the above distri- 
butions is given here. 

We find that in the derivation of the equations 
for dead polymer and polymer radical distributions, 
the integral, 

dZ  ( A l . l )  

arises naturally. 

can write 
Making use of the transformation Zo - Z = u, we 

Since 

( - l ) r n !  Un-r 

r = O  ( n  - r ) !  a'+' 
S unenudu = eau 2 (A1.3) 

we get the integral as 

1 n! (Z,-z)"-' 
(A1.4) I = e-a(Zo-Z) ' zo ( n  - r ) !  a'+' r = O  

The zeroth moment, Xo, is therefore given by 

We can write 

consider the integral, 

d X  
I - $e-2X 
1 + +e-2x 

=Jx 

This can be integrated by parts by assuming 

Vdu = J [ X  + In( 1 + rC/e-2X)ldX (A1.5) 
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However, we know that 

d X  S b X )  

cannot be expressed as a finite combination of ele- 
mentary functions.48 Therefore, we express the term 
involving logarithmic function as a series 

Y" :. In( 1 + y )  = 2 ( -1  ) n + l -  
n 

ffi 

n=l 

where Y = $e-2x 
Therefore, 

X 2  
Vdu = - S 2 

I d X  $2e-4x +-- $ e  . . . + J ( $ e - 2 X  - ~ 

2 3 

Hence, we get 

where CT is the constant of integration to be eval- 
uated using the initial condition, Xo = Xoo at t = 0 
(or Z = Zo).  
We get, 

Hence, we finally obtain 

X 2  
2 

d X  = - + XZn(1 + $ e - 2 x )  

writing 

It is also seen that 

This can be split into three integrals, as 

= -Zo(x + In( 1 + $ e - 2 X ) )  ( A M )  

we have 

(A1.9) 

+ J ( E ) l ' m k p [ M ]  [ P I &  (A.l . l l)  

The first integral, 11, gives 

(A1.12) kd 
1 1  = - ( Z +  1 )  

212, 

The second integral I2 is 
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Expressing (E) in terms of ( 2 0  - Z ) ,  making 

use of eq. (A1.4), and dividing by the integrating 
factor, we obtain for the second integral 

Similarly, the third integral I3 is 

- 
m 

For the sake of convenience, let 

(A1.13) 

(A1.14) 

(A1.15) 

Then 

m 

+ C:( rMl)iim (A1.16) 
[MI0 

Q2 = Q20 at  Z = Zo 

m 

(A1.17) 

The differential equation governing second mo- 
ment of dead polymer distribution (eq. 50) is 

Integrating eq. ( 5 1  ) , using eq. (A1.4) and eq. ( 3 0 ) ,  
we obtain upon substitution of the limits 

I x - (2; - Z2) + Z ( 2 ,  - 2 )  + Zn(2o - 2 )  I2 

Further, 

[MI0 

= -J Q2dZ 

Integrating eq. (A1.16), using eq. (A1.4), we get, 

1 s kt[P]Q2dt = - - (2; - Z 2 )  + Z(Zo - 2 )  
IZd" kt 2 



214 VENKATESHWARAN AND KUMAR 

3 

X 2 (n, rn + 1 )  + C z ( 1  - e-('O-')) (A1.19) 

Where C: is as defined in eq. (A1.17), and 

( n - r ) !  X r + l  

x c  (A1.20) 
( n  - r - p ) !  YP+l 

c ( X ,  Y )  = c A c 
n=O G+' r = O  

n-r ( n  - r ) !  (2, - 2 ) n - r - p  

p = o  

Therefore, 

1 x - (2; - Z 2 )  + 2 ( 2 0  - 2 )  [1 

REFERENCES 

1. A Kumar and S. K. Gupta, Fundamentals of Polymer 
Science and Engineering, 1st ed., Tata McGraw Hill, 
New Delhi, 1978. 

2. G. Odian, Principles of Polymerization, 2nd ed., 
McGraw Hill, New York, 1982. 

3. F. W. Billmeyer, Textbook of Polymer Science, Wiley, 
New York, 1984. 

4. G. Allen and J. C. Bevington, Ed., Comprehensive 
Polymer Science, Vols. 1-7, Pergamon, London, 1989. 

5. G. Venkateswaran, Simulation and Experimental 
Validation of Radical Polymerization with AIBN Ini- 
tiator in Presence of Shear, M. Tech Thesis, Depart- 
ment of Chemical Engineering, Indian Institute of 
Technology, Kanpur, India, 1990. 

6. P. E. M. Allen and C. R. Patrick, Kinetics and Mech- 
anism of Polymerization Reactions, 1st ed., Ellis Har- 
wood, Chichester, 1974. 

7. J. Brandrup and E. H. Immergut, Polymer Handbook, 
2nd ed., Wiley, 1975. 

8. J. A. Beisenberger and D. H. Sebastian, Principles of 
Polymerization Engineering, Wiley, New York, 1983. 

9. B. Kapoor, Parametric Sensitivity of Chain Polymer- 
ization Reactors Exhibiting Trommsdorff Effect, M. 
Tech Thesis, Department of Chemical Engineering, 
IIT, Kanpur, 1988. 

10. A. Kumar and P. K. Khandelwal, Encyclopedia of En- 
gineering Materials, Vol. 1, N. P. Cheremisnoff, ed., 
Marcel Dekker, New York, 1988. 

11. J. L. Throne, Plastics Process Engineering, 1st ed., 
Marcel Dekker, New York, 1979. 

12. W. H. Ray and R. L. Lawrence, Chemical Reactor 
Theory, N. R. Amundson and R. Lapidus, eds., Pren- 
tice Hall, Englewood Cliffs, NJ, 1977. 

13. M. Tirrel, R. Galvan, and R. L. Lawrence, Chemical 
Reaction and Reactor Engineering, J. J. Carberry and 
A. Varma, eds., Marcel Dekker, New York, 1986. 



SOLUTION OF FREE RADICAL POLYMERIZATION 215 

14. M. Szwarc, J .  Polym. Sci., 16, 367 (1955). 
15. L. Herk, M. Feld, and M. Szwarc, J .  Am. Chem. SOC., 

16. M. Stickler and E. Dumont, Makromol. Chem., 187, 

17. E. T. Denisov, Makrom. Chem. Suppl., 8 , 6 3  (1984). 
18. P. W. Lenz, Organic Chemistry of Synthetic Polymers, 

19. D. T. Turner, Macromolecules, 10, 221 (1977). 
20. J. Cardenas and K. F. O’Driscoll, J. Polym. Sci. Polym. 

Chem., 14, 883 (1976); 15, 1883 (1977); 15, 2097 
(1977). 

21. F. L. Marten and A. E. Hamielec, A.C.S. Symp., 104, 
1979; J .  Appl. Polym. Sci., 27, 489 (1982). 

22. W. Y. Chiu, G. M. Carratt, andD. S. Soong, Macro- 
molecules, 16,348 ( 1983). 

23. T. J. Tulig and M. Tirrel, Macromolecules, 14, 1501 
(1981); 15,459 (1982). 

24. K. Horce, I. Mita, and H. Kambe, J .  Polym. Sci., 
A 1  ( 6 ) ,  2663 (1968). 

25. K. Arai and S. Saito, J .  Chem. Eng. Jap., 9 ( 4 ) ,  302 
(1976). 

26. S. Balke, L. Garcia-Rubio, and R. Patel, Polym. Eng. 
Sci., 22, 777 (1982). 

27. D. Achilias and C. Kiparissides, J .  Appl. Polym. Sci., 
35,1303 (1988). 

28. K. F. O’Driscoll, Pure and Appl. Chem., 53, 617 
(1981). 

29. J. S. T. Bogujoko and B. W. Brooks, Makromol. Chem., 
184,1623 (1983). 

30. M. Stickler, D. Panke, and A. E. Hamielec, J .  Polym. 
Sci. Polym. Chem., 22, 2243 ( 1984). 

31. M. Stickler, Makromol. Chem., 184, 2563 ( 1983). 
32. J. A. Beisenberger, R. Capinpin, and J. C. Young, Po- 

33. D. H. Sebastian and J. A. Beisenberger, Polym. Eng. 

83, 2998 (1961). 

2663 (1986). 

Wiley Interscience, New York, 1968. 

lym. Eng. Sci., 16,101 (1976). 

Sci., 16,117 (1976). 

34. M. E. Sacks, S. Lee, and J. A. Beisenberger, Chem. 

35. S. Lynn and Huff., AZChE Journal, 17,475 (1971). 
36. R. Sala, F. V. Gris, and L. Zanderighi, Chem. Eng. 

Sci., 29, 2205 (1974). 
37. A. Hussain and A. E. Hamielec, AZChE Journal Symp., 

160,112 (1976). 
38. J. P. A. Wallis, R. A. Ritter, and H. Andre, AIChE 

Journal, 21,686 (1975). 
39. S. S. Agarwal and C. Kleinstreuer, Chem. Eng. Sci., 

41,3101 (1986). 
40. J. W. Hamer and W. H. Ray, Chem. Eng. Sci., 41, 

3083 (1986). 
41. A. Hui and A. E. Hamielec, J .  Appl. Polym. Sci., 16, 

749 ( 1972). 
42. N. K. Tien, E. Fleschel, and A. Renkau, Chem. Eng. 

Commun., 36, 25 (1985). 
43. P. E. Baillagou and D. S. Soong, Polym. Eng. Sci., 

25,212, (1985); Chem. Eng. Sci., 40,75 (1985); 40, 
87 (1985). 

44. B. M. Louie and D. S. Soong, J .  Appl. Polym. Sci., 
30, 3707 (1985); 30, 3825 (1985). 

45. B. M. Louie, W. Y. Chiu, and D. S. Soong, J .  Appl. 
Polym. Sci., 30,3189 (1985). 

46. B. M. Louie, T. Franaszek, T. Pho, W. Y. Chiu, and 
D. S. Soong, J .  Appl. Polym. Sci., 30, 3841 (1985). 

47. M. Tjahjadi, S. K. Gupta, M. Morbidelli, and A. 
Varma, Chem. Eng. Sci., 42, 2385 (1987). 

48. S. M. Selby, ed., Standard Mathematical Tables, 15th 
ed., 1967. 

49. M. Abramowitz and I. A. Segun, eds., Handbook of 
Mathematical Functions, Dover, New York, 1967. 

Eng. Sci., 28, 241 (1973). 

Received June 3, 1991 
Accepted July 24, 1991 


